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The finite element method has been applied to the analysis of acoustic problems with
several natural frequencies and mode shapes. First, a recovery-based error estimation is
performed following the well-known procedures of structural problems. Then, an h-adaptive
refinement strategy is proposed that leads to a finite element mesh with the minimum
number of elements and with a specified error for each of the natural frequencies included in
the analysis. The procedure provides a useful numerical tool, since the computational
requirements are reduced. In addition, results obtained by means of the minimum element
size procedure are shown for comparison purposes. The similarity of the meshes given by the
two methods is justified on the basis of the equations that lead to the element size of the
mesh. The procedure has been applied to some numerical examples to illustrate its validity.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Acoustic problems are usually modelled by means of analytical and numerical techniques.
While the former have important computational advantages when the domains and the
boundary conditions are relatively simple (see reference [1] for elliptical domains and
reference [ 2] for the circular case), the latter are useful for arbitrary geometries, at the cost of
higher computational requirements. In this case, it is important to define numerical
procedures so that the final mesh leads to the prescribed accuracy with a minimum
computational cost. Since the acoustic response of a system is usually affected by several of
its natural frequencies and mode shapes, a method that enables one to obtain a single mesh
with a minimum number of degrees of freedom and a specified error for each natural
frequency appears to be a desirable tool for the numerical modelling of acoustic problems.
The basic structure of the method can be divided into: (1) estimation of the discretization
error; (2) development of the strategy associated with the h-adaptive refinement; and (3)
mesh generation. While the present work deals with the first and second parts of the
previous structure, details of mesh generation procedures can be found elsewhere [3].
Some procedures to estimate the discretization error for acoustic problems with
harmonic excitation can be found in the literature. Bouillard et al. [4] adapted the
superconvergent patch recovery technique (SPR) proposed by Zienkiewicz and Zhu [5, 6]
to acoustic problems, considering complex variables. This work showed that the error
estimator depends on the frequency of excitation. Ihlenburg and Babuska [7, 8] studied the
finite element error of the solution of the Helmholtz equation when a high wave number is
considered. They showed that the total error can be divided into two terms: a local error
which can be estimated with the traditional recovery techniques that perform local
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calculations, and a global error related to the pollution of the solution, which is associated with
a phase lag between the exact and the numerical solution. This pollution term can be neglected
in the asymptotic range, that is, when the mesh is very refined, but it becomes important in
the preasymptotic range [9], in which the standard a posteriori estimates based only on
local computations underestimate the exact error. For the kind of meshes and frequency
range considered in the present work, the pollution error has not been taken into account.

In the case of natural frequencies and mode shapes, most of the reported works that deal
with error estimation are applied to structural problems, showing that the patch recovery
techniques usually lead to good results. In references [10, 11], the SPR technique was used
to improve the stress field associated with each natural mode and to estimate the error of
the corresponding natural frequency. Stephen and Steven [12] considered the displacement
modal field given by finite element calculations in a patch in order to improve it via
a weighted least-squares technique. This enabled them to evaluate more accurate
eigenvalues, which were used as an error measure for the original finite element analysis.
Hager and Wiberg [13] proposed a modification of the SPR technique, based on the
displacement field (SPRD) rather than the stress field. The improved displacement field led
to a better estimation of the natural frequencies. The results were shown to be quite good,
mainly for regular meshes and low order mode shapes. The present work applies the SPR
technique adapted to acoustics [4] in order to estimate the discretization error in acoustic
eigenfrequencies. This means that the acoustic pressure gradient associated with each mode
shape is improved in order to be compared with the original finite element solution,
enabling one to obtain an error estimation of the acoustic natural frequencies. As will be
shown from numerical examples, the error estimation is found to be acceptable for
engineering purposes, that is, the effectivity index is close to unity as the mesh is refined.

Once the discretization error has been estimated, the desired error can be achieved by
remeshing the original finite element mesh based on the error estimation. Some reported
works that deal with h-adaptivity in acoustics consider the problem of frequency response
for a single frequency of excitation. In references [ 14, 15], the SPRD technique was applied
to obtain a better pressure field. This leads to the optimum mesh for a given frequency of
excitation by considering the criterion of achieving equal error in each element of the new
mesh. As far as the eigenproblem is concerned, the reported papers dealing with h-adaptive
refinement mainly consider structural problems. Hager and Wiberg [13] considered the
optimum mesh for a single natural frequency. The works of Ladeveze et al. [16] and
Ladeveze and Pelle [17] studied the performance of the optimum mesh for a set of natural
frequencies, defining as the optimum mesh the one that achieves a mean error in the set of
eigenvalues lower than the desired error, with a minimum number of elements. References
[10, 11] defined h-adaptive strategies in order to obtain the optimum mesh for a set of
natural frequencies, considering, in a general way, a desired error which can be different for
each mode shape.

The strategy developed in this work is applied to two bidimensional test problems. First,
a problem with exact analytical solution is considered (a rectangular cavity), which enables
one to validate the procedure. Secondly, a more complex geometry similar to the one
considered in reference [14] is analyzed.

2. ACOUSTIC NATURAL FREQUENCIES AND MODE SHAPES
The propagation of sound in an ideal fluid is governed by the well-known wave equation [ 18]

1 2%,
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Apq (1)
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A being the Laplacian operator, p, the acoustic pressure, ¢, the speed of sound and ¢t the
time variable. If the finite element formulation is applied to equation (1), the problem of
natural frequencies and mode shapes can be expressed, under harmonic behavior, as

([K] — o’ [M]){P,} = {0}, @

where [K] is defined as the “classical” stiffness matrix, related to the acoustic kinetic energy,
[M] the “classical” mass matrix, associated with the acoustic potential energy, w the
angular frequency and {P,} the vector containing the nodal values of the pressure
amplitude field. The matrices [K] and [M] are both real and symmetric. The solution of this
eigenproblem is a set of natural frequencies w,,, and mode shapes {P,} ., where
r denotes the mode number.

If one considers the modal transformation of co-ordinates, the modal mass m,, and the
modal stiffness k., can be defined as

{Pa}}e(r) [K] {Pa}fe(r) = kfe(r)’ 3)

{Pa}}d") [M] {Pa}fe(r) = Mye@rys (4)

where the natural frequency is given by

_ kfe(") (5)

2
Dfer) = :
M e

Introducing the errors in modal stiffness Ak, = kyop) — kexy and modal mass Am,) =
Moy — Mexery (Mexey and k.. denoting exact values) as the difference between the finite
element and the exact solution, the exact natural frequencies . can be expressed in terms
of their associated modal mass and stiffness. Therefore, the following relationship holds:

keX(r) _ kf e(r) — Ak(r)
Mexy Moy — AMgy

(©)

2
WDexr)y =

If the mode shapes are supposed to be normalized so that my.u = My = 1, the
combination of equations (5) and (6) leads to the error in natural frequency e, given by

2 2 2
ewex(r) = wfe(r) - COex(r) = kfe(r) - kex(r) = Ak(r)' (7)

The normalization of the mode shapes enables one to define the error in natural frequency
as a function of the error in modal stiffness. When consistent mass matrices are considered,
the discretization error arises mainly from the kinetic energy modelling [11]. Since only
consistent mass matrices are included in the present work, the normalization is found to be
suitable.

3. ESTIMATION OF THE DISCRETIZATION ERROR

The evaluation of the discretization error can be approached by considering the norm of the
exact acoustic pressure field p,.

1/2
H Daex H = |:f ( Vpaex)T Vﬁaede:| > (8)
14
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where V is the gradient operator, the symbol “~” denotes the complex conjugate and V' the
volume of the fluid domain. The squared norm of the finite element solution p, . is related
to the kinetic energy, and is given by

Hpufe(r)H2 = J\ (VpafE(r))T Vﬁafe(r)dV = {Pu};e(r) [K] {Pu}fe(") = kfe(r)- (9)
14

For problems in which no Dirichlet boundary conditions exist, one has || paes(1)/| = 0 since
Paes(1y 1 constant. If equation (8) is required to be a norm for all practical considerations,
only higher order modes (r > 1) have to be included in the analysis. The squared norm of
the exact discretization error e, is given by

Heex(r)H2 = Hpaex(r) - pafe(r)“2 = J\ (Vpaex(r) - Vpafe(r))T( Vﬁaex(r) - Vl;afe(r))dV~ (10)
14

The consideration of consistent mass matrices and appropriate conditions related to the
numerical integration [19], lead to the following convergence relation:

2 2 2 2
0 < €oex(r) = Wrer) — Wex(r) < Ch p’ (11)

h being the element size, p the polynomial degree of the pressure interpolation functions and
C a positive constant which depends on p and the mode considered, but not on h. The error
in norm, defined as the difference between the norm of the exact solution and that of the
finite element solution, is not completely equivalent to the norm of the error. From
equations (7), (9) and (11), and applying the triangular inequality, the error in natural
frequency e2.. satisfies the following relationship,

eg)ex(r) = Hpafe(r)”2 - ”paex(r)Hz = Hpafe(r) - paex(r) + paex(r)H2 - Hpaex(r)H2
< Hpafe(r) - puex(r)H2 + Hpaex(r)“2 - Hpaex(r)”2 = Hpaex(r) - pafe(r)“2
= Heex(r)H2~ (12)

For practical purposes, the inequality expressed in equation (12) is replaced by the
approximation “~” in order to obtain the formulation that leads to the h-adaptive
refinement, which can be accepted in the asymptotic range of convergence. To estimate
the absolute discretization error, a recovered pressure gradient field Vp} is used in
equation (10) (see reference [4]) instead of the exact one, which is generally unknown. This

leads to

eies(r) ~ Hees(r)H2 = J\ (Vp;k(r) - Vpafe(r))T( Vﬁjlk(r) - Vi)ufe(r))st (13)
14

the subscript es denoting estimated variables. The behavior of the error estimator depends
strongly on the procedure applied to obtain the recovered pressure gradient field. The
method of direct nodal averaging for linear triangular elements and the SPR technique [4]
for quadratic triangular elements are considered here. The relative exact error 7,y is
defined as

eex r
leesinll 14
H paex(r)“

ex(r) —
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In order to estimate || pyoxll, one may use the expression ||y rel|” — | Paesin | = Il €ese |l
based on equation (12) with estimated values. Finally, the estimated relative error can be
defined as

l[€eser
Nesar) = 223 - Pk (15)
\/Hpaef(r)H - Hees(r)H

4. H-ADAPTIVE STRATEGY

An h-adaptive strategy is proposed considering an optimum mesh that enables one to
obtain a specified error with a minimum number of elements [20-22], since this strategy has
been shown to be suitable for problems with several load cases. The criterion of minimizing
the number of elements has been found to give similar results to the technique associated
with the uniform absolute error distribution procedure [23, 24].

The element size in the new mesh can be defined considering the local refinement ratio

R for each mode shape

(e)
(e) __ "‘pre(r)
R(V) - h(e)pre > (16)

new(r)

with h{li being the element size in the new mesh of those elements contained in the
element e of the previous mesh whose size is h',,,. The number of elements N2k with size
hQbt can be approximated by means of

Ny = (RE)”, (17)

with D being the dimension of the problem. Here, only bidimensional geometries are taken
into account (D = 2), and therefore the new mesh has a total number of elements
Nyew glven by

new(r) ~ Z (Rff)) (18)

where N, is the number of elements of the previous mesh. If the domain associated with
element e of the previous mesh is considered, it is possible to establish a local convergence
relationship similar to that expressed in equation (11) in the asymptotic range. Thus, for
practical purposes and with estimated values, the discretization errors of two consecutive
meshes and the local refinement ratio are related by

eﬁwﬂpre ~ |:h(per)e(r)j|p _ (R(e))p (19)

(e)pre (epre | —
ewes(r)'new hnew(r)

with e{804],.., being the estimated error for all the elements of the new mesh contained in

the element e of the previous mesh whose error is denoted by !9 |,.. Combining the

previous results, an expression is derived that yields the error in the new mesh as a function

of the error in the previous mesh and the local refinement ratio,

N,
wes(r)|new - Z esﬁ;s(r)ﬁew - Z egég(r;mnew ~ Z ( Sj;s(r)|pre(R}f)))72p)' (20)
e=1

e=1 e=1
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4.1. OPTIMUM MESH FOR A SINGLE MODE SHAPE

Following the previous results, the optimum mesh for a mode shape can be achieved by
finding the local refinement ratio that minimizes

Noprew
Nnew(r) = Z (Rgf)))zs (21)

e=1
constrained to

Nopretry

Z (e(cs;s(r)bz)re(Réf)))_zp) - ew(r)'c% = Oa (22)

e=1

where e, |4 1s the absolute error specified for the mode shape r in the new mesh. The local
refinement ratio that satisfies this problem is given by [11, 25]

(p+1)/p
prﬁ(r)

Z eg%s(r) grzl
=1
(Rfﬁ)))ﬂp‘*' v =2 e |2 egss)as(r)ﬁrea (23)
w(r)ld

which depends on the estimated errors in the previous mesh, and can be evaluated
separately for all the modes included in the analysis.

4.2. OPTIMUM MESH FOR A SET OF MODE SHAPES

If Ny; modes are included in the analysis simultaneously, the local refinement ratio R for
all the modes comes from the solution of the problem associated with minimizing

Nye
Nnew = Z (R(e)Z’ (24)
e=1
constrained to
Ny
Z (esszs(r) |122re(R(8))_ 217) - ew(r)|5 = 09 r= 19 ey NM (25)
e=1

The solution of the previous problem [11, 25] shows that the local refinement ratio for a set
of modes depends on the local refinement ratio of each mode, that is,

NAI
(ROP7D = Y [&0(RE ] (26)

r=1

with £, being the global refinement contribution factor of the mode r, that satisfies the
following set of equations:

Noyre 5 Ny 2t 1 —-p/(pt+1) 5
Z |:e£§e)zs(r)|pre Z é(j)(R :je))) @ )> :| = ew(r)'d , I'= 1, LR NM (27)
e=1 ji=1

The refinement associated with some modes, however, can suitably refine the mesh for other
modes, as it is shown qualitatively in Figure 1, in which the relative error of two particular
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Figure 1. Relative error of two modes versus number of nodes for different refinement processes.

modes is represented as a function of the number of nodes of the finite element mesh. The
previous mesh has N, nodes, and the relative errors in each mode are #,, and #,:)
respectively. The new mesh is required to give desired relative errors 1,4, and 742y If only
the first mode is included in the refinement process, the errors follow the line ‘Ref. Mode 1°,
and N, nodes are necessary to achieve a value less than or equal to the desired error for the
first mode. In this case, the error for the second mode in the new mesh, #,,), is found to be
less than the desired one, that is, 1,y < 42). However, if both modes are taken into
account in the refinement (line ‘Ref. Global’), the error will be equal to the desired one for
both of them, at the expense of modifying the mesh as the second mode indicates. This
finally leads to a greater number of nodes Ny pq, SO that Ny,pa > Ny In this case, the
global refinement contribution factor ¢, is negative. Thus, in order to obtain the optimum
mesh with a minimum number of elements, only the first mode should be kept in the
refinement. Therefore, the initial problem should be reformulated by means of replacing the
equal restriction by a “less than or equal to” constraint in equation (25). The problem can
now be stated as minimizing

Npre
Nyew = 3 (R9)?, (28)
e=1
constrained to
N,
Z wes(r)lpre R(e)) ) - ew(r)|5 < 07 r= la LR} NM (29)

The optimum mesh could be obtained via the solution of this new problem. Another
possibility is to consider equations (24) and (25) and to exclude those modes whose global
refinement contribution factor is found to be negative.

4.3. MINIMUM ELEMENT SIZE CRITERION

A practical criterion to define the mesh refinement when dealing with a set of natural
frequencies consists of evaluating the local refinement ratio for each mode separately, and
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Figure 2. Acoustic mode shapes and optimum finite element meshes of a rectangular cavity (modes considered
separately).
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Figure 5. Global refinement contribution factors (legend same as in Figure 3).

then the maximum value is taken, that is
R}, = max(R()) (30)

with R{), being the local refinement ratio of the minimum element size criterion. The
sequence of meshes provided by this method is quite often very similar to that obtained via
the criterion of minimizing the number of elements explained in the previous section. The
reason can be found if equation (26) is analyzed. The local refinement ratio R is related to
the local refinement ratios of the modes, Rﬁf)’, which are weighted by the global refinement
contribution factors ¢,,. However, the exponent of the local refinement ratio is high (its
value is 4 for linear elements and 6 for quadratic elements). This means that the most
important contribution to the definition of R comes from the maximum value of R{;). It is
obvious that this simple interpretation cannot be valid for all the problems, but the
numerical results obtained in several test problems indicate that the differences between
both procedures, minimum number of elements and minimum element size, are small from
a practical point of view. However, it is important to take into account some remarkable
details when the minimum element size criterion is applied. The error obtained with this
procedure can be less than the desired one for each mode, due to the fact that some elements
are excessively refined. To avoid this situation, it is possible to introduce a scale factor
B for each mode, so that the refinement is performed by means of R, rather than the
term given directly by equation (30). This scale factor f for all the modes considered
simultaneously is obtained from

B = max(B), (31)
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Figure 6. Convergence of the exact relative error with the developed procedure and linear triangular elements
(legend same as in Figure 3).

which leads to an error less than or equal to that required in the analysis for each mode. To
evaluate the scale factor f, for each mode, equation (22) turns into

Npre

Z (egis(r)|p%re(ﬁ(r)R§rfl)n)7Zp) - ew(r)'(% = Oa (32)
e=1
and f, is found to be
2
- ew(r)|d
B’? = —. (33)
' chy)(egis(r)ﬁre(Rﬁrfl?n) Zp)

Some test problems are shown in the next section, in order to validate the h-adaptive
refinement strategy proposed in this work, as well as all the aforementioned comments
about the minimum element size criterion.

5. RESULTS AND DISCUSSION

Two bidimensional test examples are considered in this section to validate the proposed
adaptive strategy and to illustrate its application. The first example consists of a rectangular
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Figure 7. Effectivity index with the developed procedure and linear triangular elements (legend same as in
Figure 3).

cavity with closed walls, whose analytical solution is known and enables one to validate the
procedure. The rectangle is 1:6 m in length and 1 m in height, the speed of sound is
¢o = 342-57 m/s and the fluid density p, = 1-21 kg/m>. The analysis includes the mode
shapes 2, 3, ..., 10 (the mode 1 is not considered since it consists of a uniform pressure field).
First, the modes are considered separately, and the optimum mesh has been obtained for
each of them. The desired relative error is set to 5 per cent for each mode, and six h-adaptive
steps are performed to obtain the convergence curve (the starting mesh is the same for all
the modes). Figure 2 shows the results obtained (mode shape pressure field and optimum
mesh) with linear triangular elements for the aforementioned nine mode shapes arranged
according to increasing natural frequency. As can be seen, the element size depends on the
solution of the problem, and obviously, it is different for each mode shape.

The optimum refinement achieved for each mode is not able to obtain the desired error
for some of the other mode shapes. For instance, the exact relative error,

vV COf"e(r) - ng(r) (34)

nex(r) = >
wex(r)

versus the number of nodes of the mesh is depicted in Figure 3, considering the results
obtained for modes 6 and 10. If only mode 6 is included in the refinement, the discretization
error is less than or equal to the desired one for this mode and those with lower order, but
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Figure 8. Convergence of the exact relative error with the developed procedure and quadratic triangular
elements (legend same as in Figure 3).

the desired error is not achieved for higher order modes. In addition, the highest mode
cannot suitably refine some lower order modes, since the mesh obtained considering the
mode 10 gives errors higher than the desired one for modes 8 and 9.

The application of the developed procedure allows one to consider all the modes
simultaneously. The starting mesh is shown in Figure 4(a), which is equal to that considered
in Figure 2. The h-adaptive strategy leads to the mesh shown in Figure 4(b), which provides
a discretization error less than or equal to the desired one for each mode shape. Figure 5
shows the global refinement contribution factors &, obtained with the proposed method.
The modes that have significant participation are the tenth, ninth and eighth. The rest are
sufficiently refined by these modes, and hence, their contribution to the final mesh is
negligible. Figure 6 shows the convergence curve of the relative error, which is shown to be
less than or equal to than the desired one for each mode.

In order to validate the suitability of the error estimation, the ratio of the estimated error
to the exact one can be found, that is,

0(” — Hees(r)H (35)

/2 2’
W fe(r) — Wex(r)

where 0, is the effectivity index. This is represented in Figure 7, in which, as can be
observed, the effectivity index is close to unity when the number of nodes is increased (the
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Figure 9. Effectivity index with the developed procedure and quadratic triangular elements (legend same as in
Figure 3).

difference can be assessed in relation to truncation errors and tolerances in the evaluation of
the eigenvalues, among others). This is in agreement with the fact that the discretization
error arises basically from the acoustic kinetic energy term, and that the error associated
with the acoustic potential energy can be neglected in practical problems.

The same problem has been solved by means of quadratic triangular elements. Now, the
desired relative error is set equal to 1 per cent for each mode, and similar results are
obtained. Figures 8 and 9 show the convergence curves and the effectivity indices,
respectively, when all the modes are considered simultaneously in the analysis. The global
refinement contribution factors obtained via the proposed method can be seen in Figure 10.
The modes 9 and 10 have a significant weight in the mesh, and their contribution differs
from that found in the case of linear elements. The other modes are shown to have
a negligible effect.

The second test problem consists of a more complex domain (an expansion chamber),
whose geometry is similar to that used in reference [14]. The fluid properties and the
number of modes are kept equal to those of the previous example. First, four meshing steps
and linear triangular elements are considered. The desired relative error is 5 per cent and the
starting mesh is the same for all the modes. The mode shapes and the final meshes obtained
by considering the modes separately are represented in Figure 11. The fourth, eighth, ninth
and tenth modes produce very refined meshes to achieve the desired error. Figure 12 depicts
the convergence of the estimated error for the meshes associated with modes 4 and 10, and
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Figure 10. Global refinement contribution factors with quadratic triangular elements (legend same as in
Figure 3).

again, the refinement is not suitable for some of the other modes, whose error is higher than
the desired one. To save this drawback, all the modes can be considered at the same time,
giving the meshes shown in Figure 13, which have been obtained by means of the present
method and the minimum element size criterion (again the same starting mesh as in Figure
11 is considered, and it is depicted in Figure 13(a)). Both meshes are found to be quite
similar, as it was justified in a previous section. The global refinement contribution factors
of the modes 4, 8, 9 and 10 are found to be the most important in the h-adaptive process, as
can be concluded from Figure 14 (it is worth noticing that the highest contribution
factor corresponds to mode 4). The convergence of the relative error applying these two
methods is represented in Figure 15. In both cases, the achieved error is less than or equal to
the desired one for each mode. The former method provides the desired value for those
modes that participate in the refinement, and a lower value for the rest. The latter gives
similar results.

Regarding the use of quadratic elements, a desired error of 2 per cent and six steps are
considered. Figure 16 shows the convergence of the estimated error for the two previous
techniques. Now, the curves slightly differ, but the error is always lower than or equal to the
required one. The participation factors are shown in Figure 17. Modes 4, 8 and 9 define the
h-adaptive process, whereas mode 10 has been excluded (in the case of linear elements, this
mode also takes part in the mesh refinement). Moreover, the influence of the fourth mode is
higher in comparison with that associated with the three-noded element.
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Figure 11. Acoustic mode shapes and optimum finite element meshes of an expansion chamber (modes
considered separately).

6. CONCLUDING REMARKS

This work considers the error estimation in acoustic eigenproblems in which consistent
mass matrices are used. The effectivity index achieved by means of the Zienkiewicz-Zhu
estimator (extended by Bouillard et al. [4] to acoustic problems) is quite close to unity, thus
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Figure 12. Convergence of the estimated relative error (legend same as in Figure 3). Mesh obtained considering
only (a) mode 4 and (b) mode 10.

providing a reliable tool to perform the mesh refinement. A finite element refinement
strategy has been proposed that allows the inclusion of a set of acoustic natural frequencies
and mode shapes simultaneously in the analysis. This procedure gives a finite element mesh
with a minimum number of elements, in which the estimated error is less than the required
one for each natural frequency. The technique includes the influence of each mode shape,
which is represented by means of its global refinement contribution factor. In addition, it
has been justified that the traditional minimum element size criterion can be quite similar to
the proposed technique.
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Figure 13. Finite element mesh for an expansion chamber with all the modes considered simultaneously:
(a) starting mesh, (b) final mesh, minimum number of elements and (c) final mesh, minimum element size criterion.
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Figure 14. Global refinement contribution factors (legend same as in Figure 3).
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Figure 15. Convergence of the estimated relative error with the developed procedure and linear triangular
elements (legend same as in Figure 3): (a) minimum number of elements and (b) minimum element size criterion.
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Figure 16. Convergence of the estimated relative error with the developed procedure and quadratic triangular
elements (legend same as in Figure 3): (a) minimum number of elements and (b) minimum element size criterion.
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Figure 17. Global refinement contribution factors with quadratic triangular elements (legend same as in
Figure 3).
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